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1 Introduction 
 

Freezing precipitation and wind are the 
main climatic loads governing the design of 
electrical transmission lines. Wind loads are 
covered relatively comprehensively in the literature 
and codes; however, the uncertainty associated with 
ice loading is still large. Interest in this research 
area in Quebec has increased recently with the 
occurrence of events such as the 1998 ice storm.  
 A number of statistical approaches have 
been proposed to estimate ice loads which are based 
on the analysis of direct measurements (El-Fashney 
2003 and Laflamme 1995) and empirical models 
(Makkonen 1998, Jones 2002, Jones 1998). These 
approaches are based on the premises that the 
characteristics of ice accumulation and wind speed 
are location dependant but that ice storms, and 
associated winds, can be modelled as events from a 
single population. However, there appears to be a 
great variability in freezing rain events, in terms of 
duration, quantity of precipitation, and wind speed. 
Rauber (2001) proposes a characterization of 
freezing rain events into seven archetypical patterns 
based on a historical review of ice storms that 
occurred in United States.  

In this research the problem is studied by 
categorizing freezing rain events using various 
meteorological variables and statistical methods. 
The icing hazard for each type of storm is analyzed 
separately and combined to obtain icing hazard 
curves at various locations in Quebec. In this paper 
several aspects are discussed: the clustering 
procedure and the physical meaning of the results; 
and the de-aggregated extreme value analysis of 
total precipitation. 
 

2 Objective 
 

The objective of the work presented here is 
to improve estimates of atmospheric icing hazards 
by grouping freezing rainstorms into different 
groups using statistical methods.  These groups are 
then retained only if they can be associated with 

plausible physical mechanisms.  The groups are 
used to develop a de-aggregated hazard curve for 
total precipitation and associated wind speed.  The 
procedure is then applied to develop de-aggregated 
hazard curves for the Montreal area.  
 

3 Theory & Background 

3.1 Archetypical Categories 
 

Rauber (2001) compiled a list of 411 ice 
storms that occurred in the United States, east of the 
Rocky Mountains, during the period of 1970 to 
1994. The data set includes storm duration, location 
where freezing rain was observed (Vermont, 
Pennsylvania etc.), and a category of archetypical 
weather patterns for each 12 hour period. The 
different patterns are discussed below. The freezing 
precipitation events were identified using NCDC 
(National Climatic Data Centre) monthly reports 
from 1970 to 1994 for the periods from October to 
April. Three-hour surface charts corresponding to 
freezing rain events were then compiled from 
NCDC microfilms and analyzed to categorize each 
weather system.  

Weather systems are categorized into one 
of seven typical patterns (A through G) during ice 
storms for Eastern North America:  Pattern A, 
‘Arctic Front/Anticyclone’: An arctic front occurs 
ahead of arctic anticyclones, which develop in north 
western Canada and travel southeast. No particular 
cyclone is associated with the anticyclone. The 
warm air rises above the advancing cold air creating 
a temperature inversion. Owing to the absence of a 
strong low pressure cyclone, high winds and high 
precipitation would not be expected with this 
pattern; 

Pattern B, ‘Warm Front—Occlusion Sector 
of Cyclones’: In this pattern, freezing precipitation 
occurs north of the warm front as a result of the 
frontal overrunning (warm air overrunning cold air). 
The presence of the cyclone carries warm moist air 



from its south-eastern quadrant northward which 
favours higher levels of precipitation; 

Pattern C, ‘Cyclone/Anticyclone': Pattern 
C is essentially a combination of patterns A and B 
occurring simultaneously. The strong pressure 
gradient between the high and low pressure centers 
can create vigorous storm activity resulting in 
strong winds. For patterns A, B, and C precipitation 
typically occurs along a long narrow band. Rauber 
also reports that patterns A and C have  the longest 
successive 12hr patterns.  In consequence, the long 
duration storms are generally associated with these 
patterns; 

Pattern D, 'Western Quadrant of Arctic 
High Pressure': The passage of an anticyclone can 
create a cyclone west to northwest of its center.  
The freezing precipitation will occur deep within 
the artic air mass in a circular area rather than a 
narrow band; 

Pattern E, 'Cold Air Damming': This 
pattern develops when the arctic air mass moves 
well over the north Atlantic, warm Atlantic air rises 
above the cold air trapped against the east side of 
the Appalachian mountains; 

Pattern F, 'Cold Air Damming with 
Atlantic Cyclone':  An Atlantic cyclone can 
combine with Pattern E to create Pattern F. The 
presence of the cyclone has the effect of 
intensifying the pressure gradient and enhancing the 
amount of  precipitation and wind speeds. 

Pattern G, 'Cold Air Trapping': A Cyclone 
originating east of the Rockies can track east. Warm 
air circulating counter clockwise around the 
southern part of the cyclone can overrun the cold air 
of an Atlantic anticyclone trapped within the 
Appalachian Mountains. 

3.2 Data 
 

Two data are used in this work: NCEP 
reanalysis data (kalnay (1996)), and Environment 
Canada daily and hourly meteorological 
observations.  Data from both Trudaeu (formerly 
Dorval) airport and St-Hubert airport are used. The 
period covered by the data set is from 1954 to 2004 

NCEP reanalysis data was used to compile 
a data set on geopotential heights (specifically 1000 
mb, 925 mb, and 500 mb), surface pressures, and 
wind speeds during ice storm events.  Data is 
available on a grid of 2.5 degree latitude and 2.5 
degree longitude, dating back to the 1948 
 
 

3.3 Clustering Storms 
 
A list of ice storms was developed by 

scanning the hourly observations for the occurrence 
of freezing rain at each airport.  Individual storms 
were defined as each set of successive days of 
observation of freezing rain.  Note that this 
definition does not correspond to the definition 
sometimes used by electric utilities where the 
notion of persistence of ice deposits on a surface is 
also considered.  The total precipitation and average 
wind speed at Dorval and St-Hubert airports were 
compiled from the Environment Canada data for 
each storm.   

 Total precipitation is used as a measure of 
storm severity to simplify comparison of single 
population results with clustered results given the 
uncertainty and variability in observed ice 
accumulations.  Analysis with an icing model would 
both reduce uncertainty and variability on estimates 
of ice accumulations. 

The clustering process is a statistical 
procedure that groups individual storms into 
homogenous groups on the basis of common 
characteristics.  For this purpose, each individual 
storm is characterized by maps of average 
anomalies for various storm characteristics derived 
from the NCEP reanalysis project.  For each storm, 
an anomaly map is made for average sea level 
pressure (SLP). The anomaly is defined as the 
average value (at each grid point) during the storm 
minus the monthly average (calculated at each grid 
point for the period of 1954 to 2004). This method 
was chosen to study the storms following the work 
of Gyakum (2001). However the area used in the 
study is closer to that used by Rauber: from 250° to 
310° W longitude, and 25° N lat to 60° N latitude.  

Several multivariate statistical analysis 
methods can be used to perform cluster analysis or 
pattern analysis.  Among these, Principal 
Component Analysis (PCA) is among one of the 
most popular in atmospheric sciences (Preisendorfer 
(1988).  The purpose of PCA is to identify and rank 
by order of decreasing importance a set of 
uncorrelated linear combinations of the original 
variables that explain most of the variability in a 
data set.  When applied to spatial data sets, the 
procedure will identify the dominant and recurrent 
spatial patterns for the variation of a physical 
characteristic. 

 Principal component analysis was 
performed on a data set consisting of the average 
anomaly values of SLP of all storms at 312 grid 
points.  The first 10 principal components explain 
up to 90% of the variability which represent a 
compression of 3.2% of the original data set, and 



are representative of the entire data set.  The 
components are used to cluster the storms in 
homogeneous groups. The clustering is done using 
the k-means algorithm (Dillon (1984)).  The k-
means algorithm requires the definition of a metric 
that measures the variability between clusters and 
within clusters. In this case a Euclidean distance is 
used. Clusters are obtained by first specifying the 
desired number of clusters.  Storms are then 
assigned to each cluster in order to minimize within 
cluster variability while maximizing between 
cluster variability.  Various methods are proposed in 
the literature in order to optimize the number of 
clusters.  In this case, objective methods were 
combined with the ability to physically interpret the 
clusters to determine their optimal number. 

Following this procedure, the optimal 
number of clusters was determined to be 2 or 3 
clusters. These clusters correspond to groups with 
distinct physical interpretations that are similar to 
Rauber’s archetypical patterns. Increasing the 
number of clusters produces clusters that are poorly 
related to known patterns and results in poorly 
populated clusters.   
 

3.4 De-aggregated Hazard Analysis 
 

De-aggregated hazard analysis is routinely 
used in the assessment of natural hazards, and in 
particular for earthquake hazard analysis.  The 
analysis is performed by analyzing the contributions 
from various sources of hazards separately and 
combining these individual contributions to 
determine the total hazards at a given location.  The 
total hazards function is then used for defining 
design criteria as a function of the return period. 

In this application, the frequency and 
probability distribution functions for storms are 
defined using a peak-over-threshold for each 
cluster.  Storm severity is described by the total 
precipitation during the storm. Then frequency 
versus intensity curves are obtained for each cluster  
and the sum of these frequencies is used to create a 
hazard curve. (Field)  

The probability distribution function 

)( oi hf  is estimated for total precipitation or 

amount of freezing rain for each category of storm, 
i, as well as the corresponding annual occurrence 

rate, iν . The probability of a freezing rain event of 
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where n is the number of clusters.  Plotting 

iλ provides oh  makes disaggregated frequency-

intensity curves.  

The probability of exceeding oh  during a time 

period t can be estimated using a Poisson 
distribution.. 
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Plotting P versus oh  provides a hazard curve for a 

given time period t. 
 Similarly, the corresponding return period 
is calculated as  
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For small values of totλ the equation becomes 

tot
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λ
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3.5 Distribution Function 
 

The peaks over threshold method requires 
to specify a minimum threshold value for storm 
severity. The corresponding annual occurrence rate 
νi is simply equal to the total number of events 
meeting the criteria divided by the time period. The 
generalized Pareto distribution (GP) is often used in 
combination with the POT method (Jones 2002, 
Wang 1991, Picklands 1975). Here, both the GP 
and generalized extreme value (GEV) distribution 
are used in the analysis. El-fashney (2003) 
compared a number of extreme value distributions 
using POT and found that three parameter 
distributions performed well on average for ice 
accumulation during ice storms.  

The parameters of the GP and GEV are 
estimated using L-moments (Hosking and Wallace 
1997). The goodness of fit of the distributions is 
evaluated uses both maximum absolute error 
(MAE) and root mean square error (RMSE).  
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where xi are the observations and yi are the 

predicted value using the probability distribution 
function with the corresponding exceedance 
probability using the Cunnane plotting position. The 
total number of observations is represented by n, 
and m is the number of parameters of the 
distribution function. 
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where i is the rank of an observation.   
 
Thus, 
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4 Results 

 
The results presented here are for storms 

compiled for the Montreal area. The storms are 
identified using the data from Trudeau airport. The 
values are averaged with the observations from St 
Hubert airport.   

The results presented are for a 10mm 
threshold. Using a smaller threshold introduces too 
many events that have no relevance in terms of 
hazards.  Eliminating smaller values generally 
results in better statistical fits, and greater 
distinction between mean precipitation values of 
clusters. However, using a larger threshold results 
in poor fits as the clusters have too few data. 
However, since high quantile estimates are usually 
insensitive to small values, efficient high quantile 
estimates can be obtained at reasonably high 
thresholds (Wang 1991). 
 

4.1 Physical Interpretation of 
Patterns 

 
Figures 4-1 and 4-2 show the average map 

of SLP anomalies for 2 clusters. Fig 4-1 indicates 
relatively high positive SLP anomalies over most of 

Ontario, Quebec, and particularly over the Maritime 
Provinces. Positive values indicate high pressure 
systems, and negative values indicate low pressures 
systems. The spatial extent of the positive values 
and the relatively low negative anomalies (-4 hPa) 
is characteristic of a Type A pattern.  Figure 4-2 is 
reversed. The lack of high positive anomalies and 
the presence of high negative anomalies suggest a 
Type B pattern.  Table 4-1 shows the averages and 
standard deviations for the total precipitation and 
maximum wind speeds for the storms associated 
with each cluster.  Cluster 1 (containing 58 storms) 
has a higher average precipitation than cluster 2 
(containing 91 storms); however the standard 
deviation is quite high. Note that the 1998 ice storm 
is included in the first cluster.  
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Figure 4-1: SLP (hPa) Anomaly Cluster 1/2 
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Figure 4-2: SLP (hPa)  Anomaly Cluster 2/2 

 

 
 
 



Table 4-1: Cluster Averages 10mm threshold 

Cluster No. Mean 
Precip. 
(mm) 

Std. 
Dev. 
Precip 
(mm) 

Mean 
Max 
Wind. 
(m/s) 

Std. 
Dev. 
Max 
Wind. 
(m/s) 

Single  149 21.5 11.5 37.4 12.3 
      
1/2 58 23.4 15.8 38.2 13.0 
2/2 91 20.3 7.4 36.8 11.9 
      
1/3  44 24.3 15.8 37.9 11.7 
2/3  49 21.4 7.6 37.9 13.3 
3/3 56 19.3 9.9 36.5 11.9 
 

Figures 4-3 to 4-5 show the average cluster 
map of the SLP anomalies for 3 clusters. Cluster 1/3 
has a high positive anomaly centered over north 
eastern Quebec, and a moderate negative anomaly. 
The strong pressure gradient suggests that many 
pattern C storms form this cluster. Cluster 2/3 is 
similar to an average anomaly map of pattern B. 
Cluster 3/3 is similar to cluster 1, but shows a 
weaker pressure gradient. There is greater 
difference in the values of average total 
precipitation for 3 clusters. Cluster 2 exhibits the 
greatest precipitation, greater than the single 
population average. This is consistent with the 
expectation that more vigorous storms would be 
observed in a pattern C synoptic system.  The 1998 
ice storm is included in this cluster. The third 
cluster has a lower average precipitation. This is 
again consistent with there being a weaker pressure 
gradient than for the other clusters. 
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Figure 4-3 : SLP (hPa) Anomaly Cluster 1/3 
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Figure 4-4: SLP (hPa) Anomaly Cluster 2/3 
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Figure 4-5:  SLP (hPa) Anomaly Cluster 3/3 

4.2 Extreme Value Analysis 

 
Figure 4-6 shows both the MAE error and 

RMSE for both GEV and GP for a single 
population. When comparing the values for single 
populations, the GEV distribution produces better 
fits. For this data, the GEV distribution performs 
quite well. This is not always the case. Similar plots 
for Quebec City, indicate that the GEV does not 
provide the best fit Erfani (2007).  

Figure 4-7 presents a similar plot for the 
MAE of 3 clusters and the single population. The 
GP plot for the single population has the highest 
MAE until a threshold of 20mm. At a threshold 
value of 6mm and above, at least one of the 
distribution functions (GP or GEV) for a cluster 
performs better than the single population GEV 
function. The clusters are named according to their 
maximum precipitation value. The worst fits are for 
the cluster which contains the 94mm (93.5mm) 
accumulation that occurred during the 1998 ice 
storm. Extremely good fits are obtained for the 
other clusters. Plots for the RMSE are not so 
favourable (Figure 4-8); nevertheless the errors are 
below 3mm. Owing to the fewer number of 
observations in each cluster this is expected. 
However the fit of the larger values is good. 
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Figure 4-6: RMSE and MAE vs. Threshold for GP 
and GEV and a Single Distribution.  
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Figure 4-7: MAE vs. Threshold for GP and GEV 
Single Dist and Clusters 
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Figure 4-8: RMSE vs. Threshold for GP and GEV 
Single Dist and Clusters 

 

Figures 4-9 to 4-11 show the QQ plots for each 
cluster at a 10mm threshold. The best fit for the 
1998 ice storm is obtained for a 6mm threshold 
(Figure 4-12). 

 

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

F
itt

ed
 G

E
V

 V
al

ue
s 

(m
m

)

precipitation (mm)  
Figure 4-9: QQ plot Cluster 1/3 (max value 
94mm) threshold=10mm, GEV. 
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Figure 4-10: QQ plot Cluster 2/3 (max value 
41mm) threshold=10mm, GP. 
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Figure 4-11: QQ plot Cluster 2/3 (max value 
63mm) threshold=10mm, GEV. 
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Figure 4-12: QQ plot Cluster 1/3 (max value 
94mm) threshold=6mm, GP. 

 
Figure 4-13 shows a plot of the estimated 

return periods at different thresholds for the GEV 
(GEVS) and GP (GPS) single distribution and the 
best fit results for the de-aggregated distributions 
(BF) with 3 clusters. The return periods are 
calculated for 94mm (as it represents the 1998 
storm) and 75mm (as it corresponds to 
approximately the 50yr return period) of total 
precipitation. The GP distribution produces very 
high return periods at low thresholds, but converges 
to the results for the GEV at high thresholds. This 
result is found by others when using the GP 
distribution (Hosking and Wallis 1987), and is 
probably a result of the high errors at low 
thresholds. However the GEV distribution, in the 
POT approach, shows more consistent results. A 
similar result was found for data from Quebec City, 
Erfani (2007). The variation of return period as a 
function of threshold is similar in shape to the 
variation of MAE, showing the sensitivity of error 
on return period, and that a larger error 
overestimates the return period (in this case). The 
de-aggregated analysis produces the most stable 
results as a function of threshold and predicts return 
periods of approximately 100 years and 50 years for 
94mm and 75mm respectively. 
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Figure 4-13: Return Period vs. Threshold, for 
Best Fit De-aggregated Analysis and Single 
Distributions. 

5 Conclusions 
 

A procedure has been presented to perform 
a de-aggregated analysis of atmospheric icing 
hazards.  The premise of the procedure is that ice 
storms can be the result of different meteorological 
conditions that produce storms with widely varying 
characteristics.  In the latter case, it would be a 
mistake to treat icing observations as being from a 
single population.   

The proposed procedure uses SLP data 
during ice storms to characterize storm patterns.  
Individual storms are then assigned to a 
homogenous group of storms using statistical 
clustering techniques.  Hazard analysis is then 
performed by summing up the contributions for 
each homogenous group of storms. 

The procedure was applied to the Montreal 
area and the following observations were made: 
 
1) Using a POT approach combined to the GEV 
distribution produces optimal and robust results as a 
function of the threshold value.  
 
2) The deaggregated analysis also introduced 
robustness in the estimation of the return period as a 
function of the threshold, especially at high return 
periods. 
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